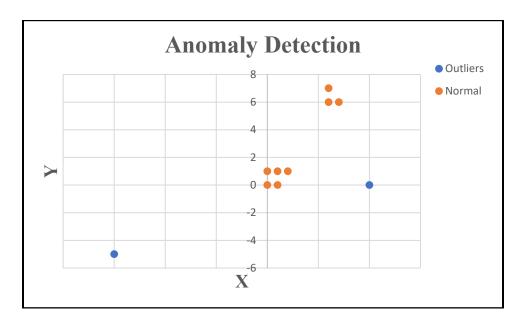
Anomaly detection

Introduction

- Identifying data points that deviate strongly from the norm:
 Outliers
- o Real-world examples:
 - Fraud detection: Credit-card fraud
 - Machine fault monitoring: High temp at night
 - Network attack spike
 - Medical outlier detection
- o Works well for large, high-dimensional datasets and few anomalies
- o Does not assume a normal distribution
- Fast & scalable based on random decision trees
- o Check this graph:



• Z-score Anomaly Detection

 Z-score measures how far a data point is away from the mean as a signed multiple of the standard deviation. Large absolute values of the Z-score suggest an anomaly.

o The z-score:

• A z-score measures how many standard deviations a data point is from the mean (μ) .

$$Z = \frac{x - \mu}{\sigma}$$

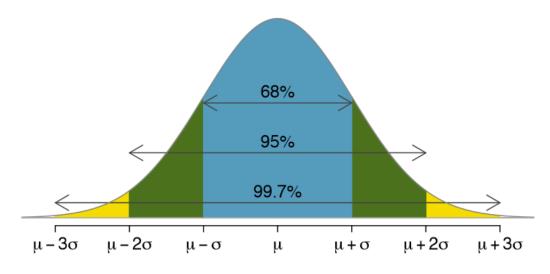
where x is the data point, μ is the mean, and σ is the standard deviation.

- Z-score can be both positive and negative.
- The farther away from 0, higher the chance of a given data point being an outlier.
- A data point is considered **anomalous** if:

$$|Zi| >$$
threshold

Typical thresholds:

- 2.0 → marks about the outer 5 % of data
- **2.5** → outer 2 % (Moderately strict)
- 3.0 → outer 0.3 % (very strict)



source: pinterest graphic

• Advantages:

- o Simple and easy to understand.
- Works well for univariate data where the data is normally distributed.

• Limitations:

- Highly sensitive to outliers, which can skew the mean and standard deviation.
- Less effective for multivariate data or non-normally distributed data.
- May not work well if anomalies are clustered or in complex patterns.

• Example:

Data Points	X	Y
P0	0	0
P1	0	1
P2	1	0
Р3	1	1
P4	2	1
P5	6	6
P6	6	7
P7	7	6
P8	10	0
P9	-15	-5

o Compute Mean & Standard Deviation

Axis	Mean (µ)	Std (σ)
X	1.8	6.21
Y	2.3	3.68

o Calculate Z-Scores

Pt	X	Z-X	Y	Z-Y
P0	0	-0.29	0	-0.63
P1	0	-0.29	1	-0.35
P2	1	-0.13	0	-0.63
P3	1	-0.13	1	-0.35
P4	2	+0.03	1	-0.35
P5	6	+0.68	6	+1.00
P6	6	+0.68	7	+1.28
P7	7	+0.84	6	+1.00
P8	10	+1.32	0	-0.63
P9	-15	-2.71	-5	-1.96

o Check Anomalies: Threshold: 2.5

• We'll use a threshold |Z| > 2.5 on either axis.

Data Points	Z-X > 2.5?	Z-Y > 2.5?	Anomaly?
P0	X	x	No
P1	X	x	No
P2	x	x	No
Р3	X	х	No
P4	X	х	No

P5	Х	х	No
P6	X	x	No
P7	X	x	No
P8	X	X	No
P9	(2.71 > 2.5)	х	Anomaly

o Interpretation:

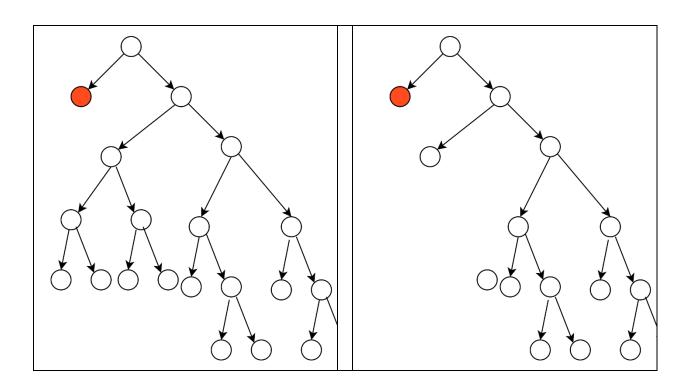
- With **threshold** = **2.5**, we only mark points that are unusually far from the mean.
- **P9** (-15, -5) is about 2.71 standard deviations from the mean X and 1.96 from Y.
 - → It is the only anomaly.
- All other points fall well within $\pm 2.5 \sigma \rightarrow normal$.

• Isolation Forest Algorithm:

- Isolation Forest builds multiple random binary trees (itrees) to isolate data points.
- o Randomly split the data using feature thresholds:
 - Unlike a decision tree used for prediction, an Isolation Forest's trees (Isolation Trees or itrees) are built entirely at random:
- Normal data points:
 - It requires more splits to isolate.
- o Outliers:
 - It takes fewer splits.

o For each tree:

- At each node, the algorithm picks one feature at random (in your data, either X or Y).
- Chooses a **random split value** uniformly between the *minimum and maximum* of that feature among the points currently in the node.
- Split the data into left/right subsets:
 - **Left child:** points with that feature ≤ threshold
 - **Right child:** points with that feature > threshold
- Repeat recursively on each smaller subset until:
 - The subset has 1 data point, or
 - The maximum tree depth is reached ($\approx \log_2 n$).



• Prediction

- o In an Isolation Forest, each data point x gets an <u>anomaly score</u> called s(x,n) or s(x), Liu et al., "Isolation Forest," ICDM 2008.
- o It measures **how easily that point can be isolated** by the random trees.

o Compute Path Length:

- The path length h(x) is the number of edges from the root node to the leaf where point x ends.
- Each point has a different path length depending on how easy it was to isolate.
- Interpretation:
 - Short path \rightarrow easily isolated \rightarrow likely an anomaly.
 - Long path \rightarrow deep in the tree \rightarrow likely normal.

Average Over All Trees:

- Repeat the process for many trees (e.g., 100).
- For each point, compute the average path length across all trees:

E[h(x)]=average path length across all trees

Anomaly Score:

$$s(x,n) = 2^{\frac{-E[h(x)]}{c(n)}}$$

Where,

x: a data point

n: The number of data points used to build each tree h(x)

E[h(x)]: The average path length of x across all trees, also called itrees.

c(n): It is the average value of h(x)

• Interpretation:

 $s(x)\approx 1 \rightarrow highly likely anomaly$

$$s(x)\approx 0.5 \rightarrow normal$$

 $s(x)<0.5 \rightarrow strongly normal$

Label the Outliers:

• Choose a threshold (often based on the contamination rate, e.g., 0.1 or 0.2) and label data points:

• Outliers like P8 (10,0) and P9 (-15,-5) in our previous dataset will have:

shorter paths \rightarrow higher scores \rightarrow anomalies.

• Example

o Given the following dataset:

Data Points	X	Y
P0	0	0
P1	0	1
P2	1	0
P3	1	1
P4	2	1
P5	6	6
P6	6	7
P7	7	6
P8	10	0
P9	-15	-5

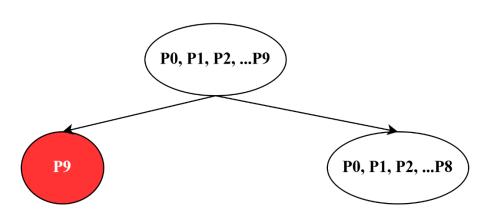
o First Tree:

- First node, the algorithm chose:
 - Random feature = X
 - Range of X values in your dataset = [-15, 10]
 - Random threshold = -0.592
 - So, at this node:
 - Left branch:

$$\rightarrow$$
 Points with X \leq -0.592 \rightarrow only P9 (-15, -5)

• Right branch:

→ points with X > -0.592 → all the others (P0–P8): P0,P1,P2,P3,P4,P5,P6,P7,P8



- **o Subsequent Nodes:**
 - Repeat the process for the Right node.